Prof. Dr. Tobias Ullmann
Lehrstuhl für Fernerkundung
+49 (0)931 31-86865
+49 (0)931 31-85544
tobias.ullmann@uni-wuerzburg.de
Institut für Geographie und Geologie
John Skilton Str. 4a
1. OG
Raum 01.B.25
nach Vereinbarung
- Entwicklung und Erprobung von (semi-)empirischen Modellen zur Ableitung bio-physikalischer Parameter zur Habitat-Charakterisierung, Biomasse-Schätzung, Ableitung der Oberflächenrauigkeit und Landoberflächentemperatur aus satellitengestützten Erdbeobachtungsdaten in verschiedenen Geozonen
- Integration von Erdbeobachtungsdaten in der physisch-geographischen Forschung (Geomorphologie, Geoarchäologie und Paläoumweltforschung) mit Schwerpunkt auf polare, semiaride und aride Regionen und unter Verwendung von SAR-Daten, multispektral-optischen Satellitenbildern und digitalen Geländemodellen
- Entwicklung und Erprobung von Klassifikations- und Change Detection Verfahren unter Verwendung von (Pol)(In)SAR-Daten und multispektralen Erdbeobachtungsarchiven zur Charakterisierung der Landoberfläche im zeitlichen Verlauf; u.a. mittels InSAR-Kohärenzänderungsanalyse, Machine-Learning, und cloud-basierter Prozessierung
- Entwicklung eines multi-sensor Ansatzes auf Basis von Erdbeobachtungsdaten zur Ableitung von physikalischen Oberflächeneigenschaften und ihrer zeitlichen Veränderung/Dynamik für tropische Regionen mit Blick auf den Landschafts- und Klimawandel und die daraus resultierenden ökologischen Folgen
- Anwendung von SAR-Zeitserien, v.a. InSAR, zu Erfassung der periglazialen Dynamik im alpinen und polaren Raum vor dem Hintergrund des Klimawandels
- Ausweitung der interdisziplinären Zusammenarbeit mit Nachbardisziplinen,v.a. Biologie, Ökologie, sowie Agrar- und Forstwissenschaften
- Vertiefung des Wissenstransfers hinsichtlich der neuen Möglichkeiten satellitengestützter, luftgestützter und bodengebundener (Drohnen, UAV/UAS) Fernerkundungssysteme
seit 10/2023
Universitätsprofessor (W2) für „Geographische Fernerkundung“ am Lehrstuhl für Fernerkundung der Universität Würzburg
seit 10/2021
Akademischer Oberrat auf Zeit am Lehrstuhl für Physische Geographie, Universität Würzburg
09/2021
Habilitation, Feststellung der Lehrbefähigung und Erteilung der Lehrbefugnis für das Fach „Physische Geographie“ durch die der Universität Würzburg
10/2015 - 09/2021
Akademischer Rat auf Zeit am Lehrstuhl für Physische Geographie, Universität Würzburg
seit 10/2023
Universitätsprofessor (W2) für „Geographische Fernerkundung“ am Lehrstuhl für Fernerkundung der Universität Würzburg
02/2015 – 10/2015
Wissenschaftlicher Mitarbeiter am Lehrstuhl für Physische Geographie, Universität Würzburg
07/2015
Promotion zum Dr. rer. nat. Thema: Characterization of Arctic Environment by Means of Polarimetric Synthetic Aperture Radar (PolSAR) Data and Digital Elevation Models (DEM)
10/2011 – 02/2015
Doktorand am Lehrstuhl für Physische Geographie und Promotionsstudium an der “Graduate School for Science and Technology, University of Würzburg (GSST)”
03/2011 – 09/2011
Diplomarbeit in Kooperation mit den EADS ASTRIUM GEO-information Services, infoterra GmbH und dem Deutschen Fernerkundungsdatenzentrum (DFD), Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) zum Thema: „Nutzen von polarimetrischen TerraSAR-X Daten für die Charakterisierung der Landbedeckung tropischer Regionen“
10/2005 – 09/2011
Studium der Geographie an der Universität Würzburg
Schwerpunkte: Physische Geographie und Fernerkundung
Nebenfächer: Statistik, Geologie
-
Harmonized NDVI time-series from Landsat and Sentinel-2 reveal phenological patterns of diverse, small-scale cropping systems in East Africa. In: Remote Sensing Applications: Society and Environment, 35, 101230.. (2024):
-
How Phenology Shapes Crop-Specific Sentinel-1 PolSAR Features and InSAR Coherence across Multiple Years and Orbits. In: Remote Sensing, 16 (2791), 26.. (2024):
-
Impact of {STARFM} on Crop Yield Predictions: Fusing {MODIS} with Landsat 5, 7, and 8 {NDVIs} in Bavaria Germany. In: Remote Sensing, 15 (6), 1651.. (2023):
-
Modelling the spatial distribution of the classification error of remote sensing data in cocoa agroforestry systems. In: Agroforestry Systems, 97 (1), 109-19.. (2023):
-
Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape. In: Frontiers in Remote Sensing, 3, 1010978.. (2023):
-
Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape. In: Frontiers in Remote Sensing, 3. (2023):
-
Exploring Sentinel-1 backscatter time series over the Atacama Desert (Chile) for seasonal dynamics of surface soil moisture. In: Remote Sensing of Environment, 285, 113413.. (2023):
-
Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic. In: Remote Sensing of Environment, 281, 113228.. (2022):
-
A new Google Earth Engine tool for spaceborne detection of buried palaeogeographical features – examples from the Nile Delta (Egypt). In: E&G Quaternary Science Journal, 71 (2), 243-47.. (2022):
-
Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria. In: Remote Sensing, 14 (3), 677.. (2022):
-
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in {Arctic} periglacial environments: case study from {Zackenberg} and {Kobbefjord}, {Greenland}. In: The Cryosphere, 16 (2), 625-46.. (2022):
-
State of the {Vietnamese} {Coast}—{Assessing} {Three} {Decades} (1986 to 2021) of {Coastline} {Dynamics} {Using} the {Landsat} {Archive}. In: Remote Sensing, 14 (10), 2476.. (2022):
-
Comparing PlanetScope and Sentinel-2 Imagery for Mapping Mountain Pines in the Sarntal Alps, Italy. In: Remote Sensing, 14 (13), 3190.. (2022):
-
Modelling the spatial distribution of the classification error of remote sensing data in cocoa agroforestry systems. In: Agroforestry Systems, 11.. (2022):
-
Estimation of {Aboveground} {Biomass} in {Agroforestry} {Systems} over {Three} {Climatic} {Regions} in {West} {Africa} {Using} {Sentinel}-1, {Sentinel}-2, {ALOS}, and {GEDI} {Data}. In: Sensors, 23 (1), 349.. (2022):
-
Estimation of Aboveground Biomass in Agroforestry Systems over Three Climatic Regions in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data. In: Sensors, 23 (349), 18.. (2022):
-
Holocene {Aridity}-{Induced} {Interruptions} of {Human} {Activity} along a {Fluvial} {Channel} in {Egypt}’s {Northern} {Delta}. In: Quaternary, 4 (4), 39.. (2021):
-
The {Sacred} {Waterscape} of the {Temple} of {Bastet} at {Ancient} {Bubastis}, {Nile} {Delta} ({Egypt}). In: Geosciences, 11 (9), 385.. (2021):
-
Preface: {Special} issue “{Geoarchaeology} of the {Nile} {Delta}”. In: E\&G Quaternary Science Journal, 70 (2), 187-90.. (2021):
-
Correction: {Finding} karstic caves and rockshelters in the {Inner} {Asian} mountain corridor using predictive modelling and field survey. In: Plos one, 16 (4), e0250142.. (2021):
-
Finding karstic caves and rockshelters in the {Inner} {Asian} mountain corridor using predictive modelling and field surveyhg. von Andrea Zerboni. In: Plos one, 16 (1), e0245170.. (2021):
-
Natural {Pans} as an {Important} {Surface} {Water} {Resource} in the {Cuvelai} {Basin}—{Metrics} for {Storage} {Volume} {Calculations} and {Identification} of {Potential} {Augmentation} {Sites}. In: Water, 13 (2), 177.. (2021):
-
Mapping and {Monitoring} {Small}-{Scale} {Mining} {Activities} in {Ghana} using {Sentinel}-1 {Time} {Series} (2015–2019). In: Remote Sensing, 12 (6), 911.. (2020):
-
Surface {Roughness} {Estimation} in the {Orog} {Nuur} {Basin} ({Southern} {Mongolia}) {Using} {Sentinel}-1 {SAR} {Time} {Series} and {Ground}-{Based} {Photogrammetry}. In: Remote Sensing, 12 (19), 3200.. (2020):
-
Mapping and Monitoring Small-Scale Mining Activities in Ghana using Sentinel-1 Time Series (2015{\textendash}2019). In: Remote Sensing, 12 (6), 911.. (2020):
-
Mapping buried paleogeographical features of the {Nile} {Delta} ({Egypt}) using the {Landsat} archive. In: E\&G Quaternary Science Journal, 69 (2), 225-45.. (2020):
-
Assessing {Spatiotemporal} {Variations} of {Landsat} {Land} {Surface} {Temperature} and {Multispectral} {Indices} in the {Arctic} {Mackenzie} {Delta} {Region} between 1985 and 2018. In: Remote Sensing, 11 (19), 2329.. (2019):
-
Biomass {Assessment} of {Agricultural} {Crops} {Using} {Multi}-temporal {Dual}-{Polarimetric} {TerraSAR}-{X} {Data}. In: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 87 (4), 159-75.. (2019):
-
The sacred canals of the {Temple} of {Bastet} at {Bubastis} ({Egypt}): {New} findings from geomorphological investigations and {Electrical} {Resistivity} {Tomography} ({ERT}). In: Journal of Archaeological Science: Reports, 26, 101910.. (2019):
-
Data {Processing}, {Feature} {Extraction}, and {Time}-{Series} {Analysis} of {Sentinel}-1 {Synthetic} {Aperture} {Radar} ({SAR}) {Imagery}: {Examples} from {Damghan} and {Bajestan} {Playa} ({Iran}). In: Zeitschrift für Geomorphologie, Supplementary Issues, 62 (1), 9-39.. (2019):
-
Preliminary results on the paleo-landscape of {Tell} {Basta} /{Bubastis} (eastern {Nile} delta): {An} integrated approach combining {GIS}-{Based} spatial analysis, geophysical and archaeological investigations. In: Quaternary International, 511, 185-99.. (2019):
-
Multi-methodological investigation of permafrost related landforms in the {Northwest} {Territories}, {Canada}. (2019):
-
Contributions of {Actual} and {Simulated} {Satellite} {SAR} {Data} for {Substrate} {Type} {Differentiation} and {Shoreline} {Mapping} in the {Canadian} {Arctic}. In: Remote Sensing, 9 (12), 1206.. (2017):
-
Scattering {Characteristics} of {X}-, {C}- and {L}-{Band} {PolSAR} {Data} {Examined} for the {Tundra} {Environment} of the {Tuktoyaktuk} {Peninsula}, {Canada}. In: Applied Sciences, 7 (6), 595.. (2017):
-
Characterization of {Arctic} {Surface} {Morphology} by {Means} of {Intermediated} {TanDEM}-{X} {Digital} {Elevation} {Model} {Data}. In: Zeitschrift für Geomorphologie, Supplementary Issues, 61 (1), 3-25.. (2017):
-
Remote sensing in the {Nile} {Delta}: {Spatio}-{Temporal} {Analysis} of {Bubastis} / {Tell} {Basta}. In: Ägypten und Levante, 26, 377-92.. (2016):
-
Sentinel-1 {SAR} {Data} {Revealing} {Fluvial} {Morphodynamics} in {Damghan} ({Iran}): {Amplitude} and {Coherence} {Change} {Detection}. In: International Journal of Earth Science and Geophysics, 2 (1). (2016):
-
Two {Component} {Decomposition} of {Dual} {Polarimetric} {HH}/{VV} {SAR} {Data}: {Case} {Study} for the {Tundra} {Environment} of the {Mackenzie} {Delta} {Region}, {Canada}. In: Remote Sensing, 8 (12), 1027.. (2016):
-
Goddess on the water: research on the sacred landscape of {Bubastis}. In: Egyptian Archaeology, 47, 17-19.. (2015):
-
Remote {Sensing} of {River} {Delta} {Inundation}: {Exploiting} the {Potential} of {Coarse} {Spatial} {Resolution}, {Temporally}-{Dense} {MODIS} {Time} {Series}. In: Remote Sensing, 7 (7), 8516-42.. (2015):
-
Land {Cover} {Characterization} and {Classification} of {Arctic} {Tundra} {Environments} by {Means} of {Polarized} {Synthetic} {Aperture} {X}- and {C}-{Band} {Radar} ({PolSAR}) and {Landsat} 8 {Multispectral} {Imagery} — {Richards} {Island}, {Canada}. In: Remote Sensing, 6 (9), 8565-93.. (2014):
-
{CLASSIFICATION} {OF} {COASTAL} {ARCTIC} {LAND} {COVER} {BY} {MEANS} {OF} {TERRASAR}-{X} {DUAL} {CO}-{POLARIZED} {DATA}. (2013):
-
Urban {Growth} and {Sprawl} of {Mersin} {City}, {Turkey}: {Change} analysis based on {Earth} {Observation} and {Socio}-{Economic} {Data}. In: Megaron, 7, 3-25.. (2012):
-
Characterization of {Land} {Cover} {Types} in {TerraSAR}-{X} {Images} by {Combined} {Analysis} of {Speckle} {Statistics} and {Intensity} {Information}. In: IEEE Transactions on Geoscience and Remote Sensing, 49 (6), 1911-25.. (2011):
-
Characterization of Land Cover Types in TerraSAR-S Images by Combined Analysis of Speckle Statistics and Intensity Information. In: IEEE Transactions on Geoscience and Remote Sensing, 49 (6), 1911-25.. (2011):
-
Land cover classification based on single-polarized {VHR} {SAR} images using texture information derived via speckle analysis. In: 2010 {IEEE} {International} {Geoscience} and {Remote} {Sensing} {Symposium}Seiten, 1875-78.. (2010):
-
Change {Detection} using high resolution {TerraSAR}-{X} data preliminary results. In: Remote Sensing and Spatial Information Sciences, 38. (2009):